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93430 Villetaneuse, France
3 Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudzia̧dzka 5/7, 87-100 Toruń, Poland
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Abstract
The Vandermonde determinant plays a crucial role in the quantum Hall effect
via Laughlin’s wavefunction ansatz. Herein the properties of the square of
the Vandermonde determinant as a symmetric function are explored in detail.
Important properties satisfied by the coefficients arising in the expansion of
the square of the Vandermonde determinant in terms of Schur functions are
developed and generalized to q-dependent coefficients via the q-discriminant.
Algorithms for the efficient calculation of the q-dependent coefficients as finite
polynomials in q are developed. The properties, such as the factorization of the
q-dependent coefficients, are exposed. Further light is shed upon the vanishing
of certain expansion coefficients at q = 1. The q-generalization of the sum
rule for the squares of the coefficients is derived. A number of compelling
conjectures are stated.

PACS number: 02.30.Gp

1. Introduction

The Vandermonde determinant plays a crucial role in the quantum Hall effect via Laughlin’s
wavefunction ansatz [1] and in the description of one-component plasmas (Tellez and Forrester
[2]). This has resulted in considerable interest in the expansion of the Laughlin wavefunction
as a linear combination of Slater determinantal wavefunctions for N particles (Dunne [3] and
Di Francesco et al [4]). It is the even powers of the Vandermonde determinant that play the
crucial role in determining the coefficients of the expansion of the Laughlin wavefunction as
4 The two authors R C King and F Toumazet wish to dedicate this paper to the memory of the third author,
B G Wybourne, who died on 26 November 2003. Professor Brian Wybourne will be remembered as an inspirational
colleague and a great friend who will be sadly missed.
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a linear combination of Slater determinantal wavefunctions. Indeed, the relevant coefficients
are directly related to the signed integers that arise in the expansion of the even powers of the
Vandermonde alternating function into Schur symmetric functions (Dunne [3], Di Francesco
et al [4] and Scharf et al [5]). The primary problem is to determine the signed integers for the
second power, higher powers follow by application of the Littlewood–Richardson rule, see for
example Macdonald [6]. Added interest in this problem is the realization that the expansion
of the even powers of the Vandermonde alternating function into Schur functions is directly
related to the theory of Hankel’s hyperdeterminants (Luque and Thibon [7]). Throughout we
follow the standard combinatorial notation defined by Macdonald [6].

The Schur functions that arise in the expansion of the second power of the Vandermonde
determinant are indexed by partitions, (λ), of the integer n = N(N − 1). Di Francesco et al
[4] defined a class of admissible partitions, as those partitions of n thought to be associated
with non-zero expansion coefficients, cλ, and determined their number, A(N), for all N � 29.
They conjectured that these numbers would be the exact number of non-vanishing coefficients
for every value of N provided none of the coefficients accidentally vanished. Scharf et al
[5] developed algorithms for calculating the coefficients and computed them for all N � 9
and found departures from the conjectured numbers of non-vanishing coefficients for N � 8.
Recently we have extended these calculations to N = 10.

In this paper, we first recall some of the basic properties of the Laughlin wavefunction and
the formal definition (Di Francesco et al [4]) of admissible partitions. Having identified some
of the important properties satisfied by the coefficients arising in the expansion of the square of
the Vandermonde determinant in terms of Schur functions, their generalization to q-dependent
coefficients is introduced through a consideration of the q-discriminant. Algorithms for the
evaluation of the q-dependent polynomial coefficients, cλ

N(q), arising from the q-discriminant
are developed and applied. A further refinement of the algorithm greatly reduces the amount
of overcounting leading to a substantive gain in calculation times for larger values of N.
Properties of the polynomials cλ

N(q) are considered next with particular emphasis on their
factorization. This leads naturally to the consideration of explicit N-dependent results. Several
specific results are given. Particular values of q give further insight into the properties of the
cλ
N(q) polynomials, clarifying and extending some of the earlier observations of Dunne for

q = 1. The q-polynomials associated with the vanishing of coefficients in the case of q = 1
for N = 8, 9 are shown to all contain a factor of (q − 1)4. Finally, the q-extension of
the remarkable sum rule derived by Di Francesco et al [4] for the sum of the squares of
the coefficients of the square of the Vandermonde determinant is obtained. Evidence for the
existence of a sum rule for the coefficients cλ

N(1) is given.
As a result of their ubiquitous nature in our q-dependent formulae, it is convenient to set

out here the relevant notation for q-numbers. This is such that for any q and any positive
integer m we have

[m]q = 1 − qm

1 − q
= (1 + q + q2 + · · · + qm−1) so that lim

q→1
[m]q = m. (1.1)

In addition

[m]!q = [m]q[m − 1]q[m − 2]q · · · [1]q

[m]!!q = [m]q[m − 2]q[m − 4]q · · · [m(2)]q (1.2)

[m]!!!q = [m]q[m − 3]q[m − 6]q · · · [m(3)]q

where m(r) is the residue of m mod r for any positive integer r. Of course, where appropriate
q may be replaced by any positive power p of q to give
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[m]qp = 1 − qmp

1 − qp
= (1 + qp + q2p + · · · + q(m−1)p) (1.3)

along with the obvious generalizations of the q-factorial formulae.

2. The Laughlin wavefunction and admissibility conditions

Laughlin [1] has described the fractional quantum Hall effect in terms of a wavefunction

�m
Laughlin(x) =


 ∏

1�i<j�N

(xi − xj )
2m+1


 exp

(
−1

2

N∑
i=1

|xi |2
)

(2.1)

where x = (x1, x2, . . . , xN) and m and N are positive integers. The Vandermonde determinant,
VN(x), is the alternating function of N variables x1, . . . , xN defined by

VN(x) = ∣∣xN−j

i

∣∣
1�i,j�N

=
∏

1�i<j�N

(xi − xj ). (2.2)

In terms of the this function we have

�m
Laughlin(x) = V 2m

N (x)�0
Laughlin(x). (2.3)

Since any even power of the alternating function VN(x) is a symmetric function of the variables
x1, x2, . . . , xN it follows that

�m
Laughlin(x)

/
�0

Laughlin(x) = V 2m
N (x) =

∑
λ�n

c
m;λ
N sλ(x) (2.4)

where sλ(x) is the Schur function of the variables x1, x2, . . . , xN , sometimes denoted more
simply by {λ}, and the summation is carried out over all partitions λ = (λ1, λ2, . . . , λp) of
weight |λ| = n = mN(N − 1) and length �(λ) = p. The coefficients c

m;λ
N appearing in (2.4)

are all integers: positive, zero or negative. A necessary, but not sufficient, condition for c
m;λ
N

to be non-zero is that

N − 1 � �λ � N. (2.5)

In most of what follows we consider the case m = 1:

�1
Laughlin(x)

/
�0

Laughlin(x) = V 2
N(x) =

∑
λ�n

cλ
Nsλ(x) (2.6)

where it has been convenient to set cλ
N = c

1;λ
N . In this case the partitions λ indexing the

Schur functions are of weight n = N(N − 1). Moreover, with respect to the usual reverse
lexicographic ordering of partitions, for a given N the partitions λ in (2.5) for which cλ

N is non-
vanishing are bounded by a highest partition (2N − 2, 2N − 4, . . . , 0) and a lowest partition
((N − 1)N).

It is of considerable interest to know more generally for what partitions λ the coefficients
cλ
N are non-vanishing. In this connection it is helpful to introduce, following Di Francesco

et al [4], the notion of admissible partitions:

Definition 2.1. Let λ = (λ1, λ2, . . . , λp) be a partition of weight |λ| and length �(λ), and let

aN,k(λ) =
k∑

i=0

λN−i − k(k + 1) for k = 0, 1, . . . , N − 1. (2.7)
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Then λ is said to be N-admissible if �(λ) � N and

aN,k(λ) � 0 for k = 0, 1, . . . , N − 2

aN,k(λ) = 0 for k = N − 1.
(2.8)

The set of all N-admissible partitions is denoted by AN .

It should be noted that the condition aN,N−1(λ) = 0 is just |λ| = N(N − 1). Using this
in the condition aN,N−2(λ) � 0 gives |λ| − λ1 − (N − 2)(N − 1) = 2(N − 1) − λ1 � 0 so
that λ1 � 2N − 2. The k = 0 and k = 1 conditions aN,0(λ) � 0 and aN,1(λ) � 0 give λN � 0
and λN + λN−1 � 2, respectively. Together with the constraint �(λ) � N these imply that
�(λ) = N or N − 1, as in (2.5).

As mentioned earlier, Di Francesco et al [4] had conjectured that cλ
N �= 0 if and only if λ is

N-admissible. This would imply that the number of non-vanishing coefficients cλ
N appearing

in expansion (2.5) should be equal to the number, AN = #{AN }, of N-admissible partitions.
However, it has been found (Scharf et al [5]) that there exist N-admissible partitions λ such
that cλ

N = 0. In fact for N = 8, 9 and 10 the numbers of N-admissible partitions associated
with vanishing coefficients are found to be

N = 8 : 8 N = 9 : 66 N = 10 : 389. (2.9)

In order to gain further insight into the occurrence of vanishing coefficients and to obtain
additional information regarding the coefficients in general we turn shortly to the q-
discriminant.

Before doing this we would just point out two important properties of cλ
N that have been

established by Di Francesco et al [4]. To this end it is helpful to introduce one more definition
and two lemmas.

Definition 2.2. For each N-admissible partition λ, the reverse partition λ(r) = (2N − 2)N/λ

is the complement of λ in (2N − 2)N . That is, for λ = (λ1, λ2, . . . , λN)

λ(r) = (2N − 2 − λN, . . . , 2N − 2 − λ2, 2N − 2 − λ1). (2.10)

With this definition we have

Lemma 2.3. If λ is N-admissible then so is λ(r).

Proof. If λ is N-admissible then �(λ) � N and λi � λ1 � 2N − 2 for i = 1, 2, . . . , N . Thus
λ(r) is well defined and has length �(λ(r)) � N . In addition |λ(r))| = N(2N − 2) − |λ| =
N(N − 1) since |λ| = N(N − 1). It follows that aN,N−1(λ

(r)) = 0, as required. Furthermore,
for m = 0, 1, . . . , N − 2 we have

aN,m(λ(r)) =
m∑

j=0

λ
(r)
N−j − m(m + 1) =

m∑
j=0

(2N − 2 − λj+1) − m(m + 1)

= −
m∑

j=0

λj+1 + (m + 1)(2N − 2 − m)

=
N−1∑

j=m+1

λj+1 − N(N − 1) + (m + 1)(2N − 2 − m)
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=
k∑

i=0

λN−i − N(N − 1) + (N − k − 1)(N − k)

=
k∑

i=0

λN−i − k(k + 1) = aN,k(λ) � 0 (2.11)

where we have set i = N −j −1 and k = N −m−2, so that k takes the values 0, 1, . . . , N −2,
as required to complete the proof. �

It has been observed (Dunne [3]) that the most striking property of the expansion
coefficients cλ

N of (2.6) is that they exhibit reversal symmetry, in the sense that

cλ
N = cλ(r)

N . (2.12)

This is the s = 1 property 0 (ii) of Di Francesco et al [4].
These authors also give as their property 5 an important factorization result linked to the

vanishing of one of the admissibility parameters aN,k(λ). In this context it is important to note
the following:

Lemma 2.4. For any positive integers M and N, the partition λ is (M + N)-admissible
with aM+N,N−1(λ) = 0 if and only if there exist partitions µ ∈ AM and ν ∈ AN such that
λ = ((2N)M + µ, ν). That is

λi =
{

2N + µi for i = 1, 2, . . . ,M

νi−M for i = M + 1,M + 2, . . . , M + N.
(2.13)

Proof. For any λ with �(λ) � M + N the last N parts of λ define a partition ν of length
�(ν) � N with νj = λM+j for j = 1, 2, . . . , N , as in (2.13). The condition aM+N,N−1(λ) = 0
then implies that |ν| = N(N − 1), using this in aM+N,N−1(λ) � 0 gives λM � 2N . It follows
that the first M parts of λ−(2N)M defines a partition µ with µi = λi −2N for i = 1, 2, . . . , M ,
again as in (2.13). Conversely, if µ and ν are M-admissible and N-admissible, respectively,
then �(µ) � M, �(ν) � N and ν1 � 2N − 2. Thus λ = ((2N)M + µ, ν) is well defined and
has length �(λ) � M + N .

Moreover, for k = 0, 1, . . . , N − 1 we have

aN,k(ν) =
k∑

i=0

νN−i − k(k + 1) =
k∑

i=0

λM+N−i − k(k + 1) = aM+N,k(λ). (2.14)

This implies that ν is N-admissible if and only if the first N of the (M + N)-admissibility
conditions for λ are satisfied, along with the constraint aM+N,N−1(λ) = 0.

Finally, for m = 0, 1, . . . , M − 1 we have

aM,m(µ) =
m∑

j=0

µM−j − m(m + 1)

=
m∑

j=0

λM−j − (m + 1)(2N + m)

=
k∑

i=N

λM+N−i − k(k + 1) + N(N − 1)

= aM+N,k(λ) − aM+N,N−1(λ) (2.15)



740 R C King et al

where we have set i = j + N and k = m + N , so that k = N,N + 1, . . . , M + N − 1. This
implies that µ is M-admissible if and only if the last M of the (M +N)-admissibility conditions
for λ are replaced by aM+N,k(λ) � aM+N,N−1(λ).

However combining (2.14) and (2.15) implies that λ = ((2N)M + µ, ν) is (M + N)-
admissible with aM+N,N−1(λ) = 0 if and only if µ and ν are M-admissible and N-admissible,
respectively. �

The significance of this is that if λ is (M + N)-admissible with aM+N,N−1(λ) = 0, then
from the s = 1 case of property 5 of Di Francesco et al [4] we have, in the notation of the
Lemma,

cλ
M+N = c

µ

Mcν
N . (2.16)

It will be shown later that both this result and the reversal symmetry may be generalized in a
q-dependent way.

3. The q-generalization of the square of the Vandermonde determinant

Given x = (x1, x2, . . . , xN), the q-discriminant of x is defined to be

DN(q; x) =
∏

1�i �=j�N

(xi − qxj ) = (−1)N(N−1)/2RN(q; x) (3.1)

where the quantity of particular interest here, RN(q; x), is given by

RN(q; x) =
∏

1�i<j�N

(xi − qxj )(qxi − xj ). (3.2)

This is a q-generalization of the square of the Vandermonde determinant in the sense that for
q = 1 we have

RN(1; x) =
∏

1�i<j�N

(xi − xj )
2 = V 2

N(x). (3.3)

It should be noted from definition (3.2) that RN(q; x) is a polynomial in q of degree qN(N−1),
and that for all q it is a symmetric function of the components of x.

With the above notation and that of (2.5) we have

RN(1; x) = V 2
N(x) =

∑
λ

cλ
Nsλ(x). (3.4)

The original problem was to evaluate and study the coefficients cλ
N appearing here. However,

one may be more ambitious, and gain additional insight, by seeking to evaluate the coefficients
cλ
N(q) appearing in the expansion

RN(q; x) =
∑

λ�N(N−1)

cλ
N(q)sλ(x) (3.5)

and then to recover cλ
N by setting q = 1.

First it should be noted (Macdonald [6]) that for any x = (x1, x2, . . . , xN) and
y = (y1, y2, . . . , yN) we have∏

1�i,j�N

(1 − qxjyi) =
∑

µ⊆NN

(−q)|µ|sµ(x)sµ′(y) (3.6)
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where µ′ denotes the partition conjugate to µ and µ ⊆ NN is equivalent to the restrictions
�(µ′) = µ1 � N and �(µ) = µ′

1 � N . This identity with y = x = (
x−1

1 , x−1
2 , . . . , x−1

N

)
may

be exploited as follows to give

RN(q; x) = (−1)N(N−1)/2
∏

1�i,j�N

(xi − qxj )

/ ∏
1�i�N

(1 − q)xi

= (−1)N(N−1)/2

(1 − q)N

sNN (x)

s1N (x)

∏
1�i,j�N

(
1 − qxjx

−1
i

)

= (−1)N(N−1)/2

(1 − q)N

sNN (x)

s1N (x)

∑
µ⊆NN

(−q)|µ|sµ(x)sµ′(x)

= (−1)N(N−1)/2

(1 − q)N

∑
µ⊆NN

(−q)|µ| sNN/µ′(x)sµ(x)

s1N (x)
. (3.7)

In the above s1N (x) = x1x2 · · · xN and sNN (x) = (x1x2 · · · xN)N , and use has been made of
the fact that sNN (x)sµ′(x) = sNN/µ′(x), where ‘/’ indicates the usual skew product of Schur
functions (Macdonald [6]).

As far as the x-dependence is concerned it should be noted that for any partition λ of
length �(λ) = N we have sλ(x) = s1N (x)sλ/1N (x), where λ/1N is the partition obtained from
λ by decreasing each of its N parts by 1. It follows, that the numerator of each summand of
(3.7) contains a factor s1N (x) since either �(NN/µ′) = N if �(µ) < N or �(µ) = N . In fact
taking the terms in pairs, one with �(NN/µ′) = N and one with �(µ) = N , gives

RN(q; x) = (−1)N(N−1)/2

(1 − q)N

∑
ν⊆NN−1

(
(−q)|ν| + (−q)N

2−|ν|)s(N−1)N /ν ′(x)sν(x) (3.8)

where now ν ⊆ NN−1 is equivalent to the restrictions �(ν) = ν ′
1 � N −1 and �(ν ′) = ν1 � N .

The product of Schur functions appearing here may be evaluated by means of the Littlewood–
Richardson rule (Littlewood [8] and Macdonald [6]) which determines the coefficients cλ

µν

arising in the decomposition of the product

sµ(x)sν(x) =
∑

λ

cλ
µνsλ(x). (3.9)

With this notation, it follows that

cλ
N(q) = (−1)N(N−1)/2

(1 − q)N

∑
ν⊆NN−1

(
(−q)|ν| + (−q)N

2−|ν|)cλ
((N−1)N /ν ′)ν . (3.10)

While (3.8) does not show directly that RN(q; x) is a polynomial in q, this fact does of
course follow from definition (3.3). As a result the coefficients cλ

N(q) appearing in (3.10) are
also polynomials in q. One can say somewhat more since (3.3) can be recast in the form

RN(q; x) = qN(N−1)/2
∏

1�i<j�N

(xi − qxj )(xi − q−1xj ) =
∑

λ

cλ
N(q)sλ(x). (3.11)

This implies that the polynomials cλ
N(q) must be symmetric in the sense that the coefficients

of qN(N−1)/2+k and qN(N−1)/2−k are equal for all integers k. Equivalently,

cλ
N(q) = qN(N−1)cλ

N(q−1). (3.12)
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The case q = 1 is not the only case of interest. For q = −1 we have

RN(−1; x) = (−1)N(N−1)/2
∏

1�i<j�N

(xi + xj )
2 (3.13)

and

RN(−1; x) = (−1)N(N−1)/2

2N−1

∑
ν⊆(NN−1)

s(N−1)N /ν ′(x)sν(x) (3.14)

from (3.3) and (3.8), respectively. Hence

cλ
N(−1) = (−1)N(N−1)/2

2N−1

∑
ν⊆NN−1

cλ
((N−1)N /ν ′)ν . (3.15)

The significance of these q = −1 results lies in the fact that they are related to the Schur
function product

sδ(x)sδ(x) =
∑

λ

cλ
δδsλ(x) (3.16)

where δ is the so-called staircase partition δ = (N − 1, N − 2, . . . , 1, 0). This staircase
partition is such that

sδ(x) =
∏

1�i<j�N

(xi + xj ). (3.17)

This formula may be derived from the fact that (Macdonald [6])

sλ(x) = aλ+δ(x)

aδ(x)
=

∣∣xλj +N−j

i

∣∣
1�i,j�N∣∣xN−j

i

∣∣
1�i,j�N

(3.18)

where the denominator aδ(x) is nothing other than the Vandermonde determinant VN(x) which
factorizes as in (2.2). Hence

sδ(x) = a2δ(x)

aδ(x)
=

∣∣x2(N−j)

i

∣∣
1�i,j�N∣∣xN−j

i

∣∣
1�i,j�N

=
∏

1�i<j�N

(
x2

i − x2
j

)
(xi − xj )

(3.19)

which reduces to (3.17) as required. The outcome of all this is that

RN(−1; x) = (−1)N(N−1)/2sδ(x)2 = (−1)N(N−1)/2
∑

λ

cλ
δδsλ(x). (3.20)

Now we are in a position to use an important result due to Berenstein and Zelevinsky [9]
that applies to the simple Lie algebra sl(N) but which can be readily translated to the case of
the reductive Lie algebra gl(N) of interest here.

Theorem 3.1. Let ρ be half the sum of the positive roots of sl(N), that is ρ = δ − 1
2 (N − 1)η

where η = (1, 1, . . . , 1), and let � = {αp = εp−εp+1|p = 1, 2, . . . , N−1} be the set of simple
roots of sl(N), where εi = (0, . . . , 0, 1, 0, . . . , 0) with the 1 appearing as the ith component
for i = 1, 2, . . . , N . Let Z

+ be the set of non-negative integers. Then the multiplicity mκ
ρρ of

the irreducible representation V κ in the decomposition of the tensor product V ρ ⊗ V ρ is such
that mκ

ρρ > 0 if and only if

κ = 2ρ −
N−1∑
p=1

gpαp with gp ∈ Z
+ for all αp ∈ �. (3.21)



The square of the Vandermonde determinant and its q-generalization 743

In the context of gl(N) this implies.

Corollary 3.2. Let δ = (N − 1, N − 2, . . . , 1, 0) then cλ
δδ > 0 if and only if λ is N-admissible.

Proof. Let V be the defining N-dimensional irreducible representation of gl(N). Then the
irreducible constituents V λ of V ⊗N(N−1) are specified by partitions λ of weight |λ| = N(N−1)

and length �(λ) � N . They have character sλ(x) with xi defined to be the formal
exponential eεi for i = 1, 2, . . . , N . The passage from gl(N) to sl(N) is effected by setting
ε1 + ε2 + · · · + εN = 0, or equivalently sη(x) = x1x2 · · · xN = 1. Now let λ = κ + (N − 1)η

and δ = ρ + 1
2 (N − 1)η = (N − 1, N − 2, . . . , 1, 0) so that the irreducible representations

V λ and V δ of gl(N) give on restriction to sl(N) the irreducible representations V κ and V ρ ,
respectively. Then cλ

δδ = mκ
ρρ , and it follows from theorem 3.1 that cλ

δδ > 0 if and only if

λ = 2δ −
N−1∑
p=1

gp(εp − εp+1) with gp ∈ Z
+ for all p = 1, 2, . . . , N − 1. (3.22)

It only remains to show that these conditions (3.22) coincide with the N-admissibility
conditions of definition 2.1. It follows immediately from (3.22) that �(λ) � N and
|λ| = 2|δ| = N(N − 1). The former is required for N-admissibility and the latter is just the
admissibility condition aN,N−1(λ) = 0 of (2.8). In addition, taking the (N − i)th component
of (3.22) gives

λN−i = 2i − gN−i + gN−i−1 for i = 0, 1, . . . , N − 1 (3.23)

where it has been convenient to introduce gN = 0. It follows from this that

aN,k(λ) =
k∑

i=0

λN−i − k(k + 1) = gN−k−1 ∈ Z
+ for k = 0, 1, . . . , N − 2. (3.24)

These are nothing other than the remaining admissibility conditions of (2.8). Thus (3.22)
coincides precisely with the N-admissibility conditions of definition 2.1. �

This result, corollary 3.2, has a wider significance in that it may be used to derive the
following:

Proposition 3.3. Let RN(q; x) be defined as in (3.3), then

RN(q; x) =
∑
λ∈AN

cλ
N(q)sλ(x) (3.25)

with cλ
N(q) a non-zero polynomial in q for each λ ∈ AN .

Proof. We first deal with the case λ /∈ AN . Comparing (3.14) and (3.20) reveals that

cλ
δδ = 1

2N−1

∑
ν∈⊆(NN−1)

cλ
((N−1)N /ν ′)ν . (3.26)

Since there are no cancellations of any kind in this expansion it follows from corollary 3.2 that
for all λ /∈ AN and all ν ⊆ NN−1 we have

cλ
((N−1)N /ν ′)ν = 0. (3.27)

This implies in (3.10) that cλ
N(q) = 0 for all λ /∈ AN . This means that, as required in (3.25),

we can restrict the summation over λ in expansion (3.5) to λ ∈ AN .
Moreover, it follows from (3.20) that

cλ
N(−1; x) = (−1)N(N−1)/2cλ

δδ. (3.28)
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Corollary 3.2 therefore implies that

cλ
N(−1, x) �= 0 if and only if λ ∈ AN . (3.29)

This shows that cλ
N(q) is a non-vanishing polynomial in q for all λ ∈ AN , as required. �

Of course, as we have indicated in (2.8), cλ
N = cλ

N(1) = 0 cannot be excluded for all
admissible λ, by virtue of possible cancellations in (3.10). Such cancellations simply indicate,
as we will later exemplify, the presence of at least one factor (q − 1) in cλ

N(q).

4. An algorithm for the evaluation of cλ
N (q)

While formula (3.11) for cλ
N(q) is quite explicit it does not provide a very efficient way

of calculating these polynomials. This is not only because its implementation requires the
decomposition of outer products of Schur functions (corresponding to tensor products of
irreducible representations of gl(N)), of the type sµ(x)sν(x) with µ = NN−1/ν ′ by means
of the Littlewood–Richardson rule, but also because it necessarily involves a considerable
degree of overcounting in the numerator so as to cancel the denominator factor (1 − q)N .
An alternative formula has been provided elsewhere (Scharf et al [5]) but its implementation
requires the decomposition of inner products of Schur functions (corresponding to tensor
products of irreducible representations of SN2 ). Albeit rather special inner products of the
form sNN (x) ∗ sa+1,1b (x) for all a and b such that a + b + 1 = N2. This becomes a formidable
task for all but very small values of N.

However, in addition to these formulae there exists in the case q = 1 a recursive algorithm
(Scharf et al [5]) for evaluating cλ

N = cλ
N(1) which does not require any decomposition of

either outer or inner products of Schur functions. This may be generalized to the case of cλ
N(q)

as follows.
It is first necessary to introduce the linear operator �N acting in the space PN of functions

f (x) = f (x1, x2, . . . , xN) that are polynomial in the components of x. The symmetric group
SN acts naturally on the components of x and is generated by the transpositions σi = (i, i + 1)

for i = 1, 2, . . . , N − 1. Their action on f (x) is defined by

σif (x1, . . . , xi, xi+1, . . . , xN) = f (x1, . . . , xi+1, xi, . . . , xN). (4.1)

Following Lascoux and Schutzenbeger [10], Lascoux [11] and Macdonald [12], the isobaric
divided difference operators πi for i = 1, 2, . . . , N − 1 are then defined by

πif (x) = xif (x) − xi+1σif (x)

xi − xi+1
. (4.2)

If the permutation ωN = (N,N −1, . . . , 1) has the reduced decomposition ωN = σi1σi2 · · · σir

as a word of minimal length r in the generators σi , then �N is defined by

�N = πi1πi2 · · ·πiN . (4.3)

This operator has a number of important properties (Lascoux and Schutzenbeger [10],
Lascoux [11] and Macdonald [12]). First for any f (x) and g(x) in PN such that f (x) is a
symmetric function of the components of x we have

�N(f (x)) = f (x) and �N(f (x)g(x)) = f (x)�N(g(x)). (4.4)

Now consider any vector α = (α1, α2, . . . , αN) with integer components αi for
i = 1, 2, . . . , N that are not necessarily weakly decreasing as required for a partition, and
may even be negative. Then for x = (x1, x2, . . . , xN) let xα be the monomial defined by
xα = x

α1
1 x

α2
2 · · · xαN

N . For any such monomial xα we have

�N(xα) = sα(x) (4.5)
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where sα(x) is to be defined as a ratio of determinants as in (3.18) with λ replaced by α. Since
α is not necessarily a partition the right-hand side of (4.5) may have to be standardized. From
the determinantal definition (3.18) it can be seen that (Littlewood [8])

sα1,...,αj ,αj+1,...,αN
(x) = −sα1,...,αj+1−1,αj +1,...,αN

(x) (4.6)

for all j = 1, 2, . . . , N − 1. The repeated application of (4.6) to sα(x) will give either zero or
±sλ(x) for some partition λ.

Finally, if we let y = (x1, x2, . . . , xN−1) so that x = (y, xN), and let λ be a partition of
length �(λ) < N then

�N

(
sλ(y)xk

N

) = sλ,k(x) (4.7)

where (λ, k) = (λ1, λ2, . . . , λN−1, k). Once again it may be necessary to standardize the
right-hand side of (4.7) through the repeated application of (4.6).

We may now exploit the operator �N to give a simple derivation of two results linking
monomial symmetric functions and Schur functions. For any partition µ = (µ1, µ2, . . . , µN)

let P(µ) denote the set of all distinct permutations α of the parts of µ. Then the usual
monomial symmetric function mµ(x) of x (Macdonald [6]) is given by

mµ(x) =
∑

α∈P(µ)

xα. (4.8)

Since mµ(x) is a symmetric function it follows from (4.4) and (4.5) that

mµ(x) = �N(mµ(x)) = �N


 ∑

α∈P(µ)

xα


 =

∑
α∈P(µ)

�n(xα) =
∑

α∈P(µ)

sα(x) (4.9)

where the final expression may be standardized through the use of (4.6). More generally,
(Murnaghan [13]) we have

mµ(x)sλ(x) = mµ(x)�N(xλ) = �N(mµ(x)xλ)

= �N


 ∑

α∈P(µ)

xλ+α


 =

∑
α∈P(µ)

�N(xλ+α) =
∑

α∈P(µ)

sλ+α(x) (4.10)

where once again the final expression may be standardized through the repeated use of (4.6).
Returning to the main problem, the evaluation of RN(q; x), it is clear from the definition

(3.4) that

RN(q; x) = RN−1(q; y)UN(q; x) (4.11)

where

UN(q; x) =
∏

1�i�N−1

(xi − qxN)(qxi − xN). (4.12)

In (4.11) we can expand RN−1(q; y) and UN(q; x) in terms of Schur functions of y and
monomials in x, respectively. These expansions take the form

RN−1(q; y) =
∑

ν

cν
N−1(q)sν(y) (4.13)

and

UN(q; x) =
∑

α

bα
N(q)xα. (4.14)
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By setting α = (β, k) and using the fact that x = (y, xN) we then have

UN(q; x) =
∑
k,β

b
β,k

N (q)yβxk
N . (4.15)

However, from definition (4.12), UN(q; x) = UN(q; y, xN) is a symmetric function in the
components of y. This implies that b

β,k

N (q) = b
µ,k

N (q) for all β ∈ P(µ), so that

UN(q; x) =
∑
k,µ

b
µ,k

N (q)mµ(y)xk
N . (4.16)

It then follows that

RN(q; x) =
∑
ν,µ,k

cν
N−1(q)b

µ,k

N (q)mµ(y)sν(y)xk
N . (4.17)

Hence from (4.10) we have

RN(q; x) =
∑

ν,µ,k,β∈P(µ)

cν
N−1(q)b

µ,k

N (q)sν+β(y)xk
N

=
∑
ν,β,k

cν
N−1(q)b

β,k

N (q)sν+β(y)xk
N . (4.18)

But RN(q; x) is a symmetric function in the components of x, so that

RN(q; x) = �N(RN(q; x)) =
∑
ν,β,k

cν
N−1(q)b

β,k

N (q)�N

(
sν+β(y)xk

N

)
. (4.19)

The identity (4.7) then implies that

RN(q; x) =
∑
ν,β,k

cν
N−1(q)b

β,k

N (q)sν+β,k(x)

=
∑
ν,α

cν
N−1(q)bα

N(q)sν+α(x). (4.20)

Comparison with the definition of the coefficients cλ
N(q) given in (3.5) then implies

Algorithm 4.1. The polynomials cλ
N(q) defined in (3.5) may be determined recursively with

respect to N from the identity

cλ
N(q) =

∑
ν,α

φ(ν+α, λ)cν
N−1(q)bα

N(q) (4.21)

where cν
N−1(q) and bα

N(q) are defined in (4.13) and (4.14), respectively, and where φ(ν +α, λ)

is ±1 if sν+α(x) = ±sλ(x) under the repeated application of the standardization rule (4.6),
and is zero otherwise.

The significance of (4.21) is that it allows us to determine the expansion of RN(q; x) in
terms of Schur functions sλ(x), and hence to evaluate the coefficients cλ

N(q), merely through
the term by term addition of the labels ν of the Schur functions sν(y) that appear in the
corresponding expansion of RN−1(q; y) to the weight α of the monomials xα appearing in the
expansion of UN(q; x), followed by standardization in accordance with (4.7) of sν+α(x). It is
notable that no products of symmetric functions are involved.

By way of illustration in the case N = 3 we have

R2(q; y) = qs2(y) − (q2 + q + 1)s12(y) (4.22)
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Table 4.1. N = 2.

[1] +q{2}
[−3] −(q2 + q + 1){12}

Table 4.2. N = 3.

[1] +q3{42}
[−3] −q2(q2 + q + 1)({412} + {32})
[6] +q(q2 + 1)(q2 + q + 1){321}
[−15] −(q2 + q + 1)(q4 + q3 + q2 + q + 1){23}

and

U3(q; x) = (x1 − qx3)(qx1 − x3)(x2 − qx3)(qx2 − x3)

= (
qx2

1 − (q2 + 1)x1x3 + qx2
3

)(
qx2

2 − (q2 + 1)x2x3 + qx2
3

)
= q2x2

1x2
2x

0
3 − q(q2 + 1)x2

1x1
2x1

3 − q(q2 + 1)x1
1x2

2x1
3

+ q2x2
1x

0
2x2

3 + q2x0
1x

2
2x2

3 + (q2 + 1)2x1
1x1

2x
2
3

− q(q2 + 1)x1
1x0

2x3
3 − q(q2 + 1)x0

1x1
2x

3
3 + q2x0

1x0
2x

4
3 . (4.23)

Combining these gives

R3(q; x) = q3s420(x) − q2(q2 + q + 1)s330(x) − q2(q2 + 1)s411(x)

+ q(q2 + 1)(q2 + q + 1)s321(x) − q2(q2 + 1)s321(x)

+ q(q2 + 1)(q2 + q + 1)s231(x) + q3s402(x)

− q2(q2 + q + 1)s312(x) + q3s222(x) − q2(q2 + q + 1)s132(x)

+ q(q2 + 1)2s312(x) − (q2 + 1)2(q2 + q + 1)s222(x)

− q2(q2 + 1)s303(x) + q(q2 + 1)(q2 + q + 1)s213(x)

− q2(q2 + 1)s213(x) + q(q2 + 1)(q2 + q + 1)s123(x)

+ q3s204(x) − q2(q2 + q + 1)s114(x). (4.24)

By virtue of the standardization rule (4.7) we have

s231(x) = s312(x) = s123(x) = s204(x) = 0 s402(x) = −s411(x)
(4.25)

s213(x) = s132(x) = −s222(x) s114(x) = s222(x) s303(x) = −s321(x).

It then follows that

R3(q; x) = q3s42(x) − q2(q2 + q + 1)(s412(x) + s32(x)) + q(q2 + q + 1)(q2 + 1)s321(x)

− (q2 + q + 1)(q4 + q3 + q2 + q + 1)s23(x). (4.26)

By proceeding in this way we can recursively calculate the polynomials cλ
N(q). Setting

q = 1 then gives the coefficients cλ
N appearing in (2.6). Explicit results for the polynomials

cλ
N(q) for N = 2, . . . , 5 are given in tables 4.1 to 4.4. In each case the first entry in square

brackets is the value of the q-polynomial for q = 1, that is cλ
N . The relevant Schur functions

sλ(x) have for typographical convenience been denoted by {λ} and are given to the right of the
appropriate q-polynomial.
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Table 4.3. N = 4.

[1] +q6{642}
[−3] −q5(q2 + q + 1)({6412} + {632} + {522})
[6] +q4(q2 + 1)(q2 + q + 1)({6321} + {543})
[9] +q4(q2 + q + 1)2{5212}
[−15] −q3(q2 + q + 1)(q4 + q3 + q2 + q + 1)({623} + {43})
[−12] −q3(q2 + 1)2(q2 + q + 1){5421}
[−9] −q3(q2 + q + 1)(q4 + q2 + 1){5321}
[−6] −q3(q2 + q + 1)(q4 + 1){4222}
[27] +q2(q2 + q + 1)2(q4 + q2 + 1)({5322} + {4231})
[−45] −q(q2 + q + 1)(q4 + q2 + 1)(q4 + q3 + q2 + q + 1){4322}
[105] +(q2 + q + 1)(q4 + q3 + q2 + q + 1)(q6 + q5 + q4 + q3 + q2 + q + 1){34}

5. Refinement of the algorithm for calculating cλ
N (q)

For N � 4 the algorithm 4.1 based on (4.11) for the calculation of cλ
N(q) shows some

remarkable properties if its implementation is carried out by simultaneously refining both
UN(q; x) and RN−1(q; y). This is done by setting

UN(q; x) =
3∑

u=0

U
(u)
N (q; x) with U

(u)
N (q; x) =

∑
α:α1=u

bα
N(q)xα for u = 0, 1, 2

(5.1)

and

RN−1(q; y) =
2N−4∑

r=N−2

R
(r)
N−1(q; y) with R

(r)
N−1(q; y) =

∑
ν:ν1=r

cν
N−1(q)sν(y)

for r = N − 2, N − 1, . . . , 2N − 4. (5.2)

Then

WN(q; x) =
2∑

u=0

2N−4∑
r=N−2

W
(u,r)
N (q; x) with W

(u,r)
N (q; x) = U

(u)
N (q; x)R

(r)
N−1(q; y)

for u = 0, 1, 2 and r = N − 2, N − 1, . . . , 2N − 4. (5.3)

Proceeding to calculate R
(r)

(N−1)(q, y) and U
(u)
N (x), as defined above, in the case N = 4

leads to the results displayed in tables 5.1 and 5.2, respectively. In these tables it has been
convenient to denote sλ(y) by {λ}, and x

α1
1 x

α2
2 x

α3
3 x

α4
4 by (α1α2α3α4).

These results may then be used to calculate W
(u,r)
N (q; x) as given in table 5.3, in which {λ}

now denotes sλ(x). Summing all these terms over u = 0, 1, 2 and r = 2, 3, 4 gives precisely
the results displayed in table 4.3.

It will be noted in table 5.3 that a number of the terms W
(u,r)
4 (q; x) are identically zero.

Indeed the main point of the above refinement is not just to break the calculation down into
more manageable portions but to search for zeros of this kind. Our calculations of the separate
terms W

(u,r)
N (q; x) for 4 � N � 9 lead us to propose the following:

Conjecture 5.1. For N � 4

W
(u,r)
N (q; x) = 0 for

{
u = 0 r > N − 2 +

[
N
3

]
u = 1 r > N − 2.

(5.4)
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Table 4.4. N = 5.

[1] +q10{8642}
[−3] −q9(q2 + q + 1)({86412} + {8632} + {8522} + {7242})
[6] +q8(q2 + 1)(q2 + q + 1)({86321} + {8543} + {7652})
[9] +q8(q2 + q + 1)2({85212} + {72412} + {7232})
[−12] −q7(q2 + 1)2(q2 + q + 1)({85421} + {7643})
[−9] −q7(q2 + q + 1)(q4 + q2 + 1)({85321} + {7523})
[−6] −q7(q2 + q + 1)(q4 + 1)({84222} + {6242}
[−15] −q7(q2 + q + 1)(q4 + q3 + q2 + q + 1)({8623} + {843} + {632})
[−18] −q7(q2 + 1)(q2 + q + 1)2({72321} + {76512})
[27] +q6(q2 + q + 1)2(q4 + q2 + 1)({85322} + {84231} + {7542} + {6253})
[24] +q6(q2 + 1)3(q2 + q + 1){76421}
[18] +q6(q2 + 1)(q2 + q + 1)(q4 + q2 + 1)({76321} + {75221})
[45] +q6(q2 + q + 1)2(q4 + q3 + q2 + q + 1)({7223} + {6312})
[−45] −q5(q2 + q + 1)(q4 + q2 + 1)(q4 + q3 + q2 + q + 1)({84322} + {6524})
[−54] −q5(q2 + 1)(q2 + q + 1)2(q4 + q2 + 1)({76322} + {62521})
[−36] −q5(q2 + 1)2(q2 + q + 1)(q4 + q2 + 1){75431}
[−36] −q5(q2 + 1)(q2 + q + 1)2(q4 + 1){7431}
[−27] −q5(q2 + q + 1)(q4 + q2 + 1)2({75422} + {62431})
[−18] −q5(q2 + q + 1)(q4 + q2 + 1)(q4 + 1)({62322} + {65222})
[105] +q4(q2 + q + 1)(q4 + q3 + q2 + q + 1)(q6 + q5 + q4 + q3 + q2 + q + 1) ×

({834} + {54})
[81] +q4(q2 − q + 1)2(q2 + q + 1)4({75322} + {65231})
[72] +q4(q2 + 1)2(q2 + q + 1)2(q4 + 1)({74232} + {65421})
[111] +q4(q2 + q + 1)(q10 + 2q9 + 4q8 + 3q7 + 6q6 + 5q5 + 6q4 + 3q3 + 4q2 + 2q + 1) ×

{62422}
[45] +q4(q2 + q + 1)2(q8 + q6 + q4 + q2 + 1)({6533} + {5332})
[−180] −q3(q2 + 1)(q2 + q + 1)2(q4 + 1)(q4 + q3 + q2 + q + 1)({7433} + {5341})
[−144] −q3(q2 + 1)3(q2 + q + 1)2(q4 + 1){65432}
[−90] −q3(q2 + q + 1)(q4 + q2 + 1)(q4 + 1)(q4 + q3 + q2 + q + 1){6432}
[−75] −q3(q2 + q + 1)(q4 + q3 + q2 + q + 1)(q8 + q6 + q4 + q2 + 1){52432}
[270] +q2(q2 + q + 1)2(q4 + q2 + 1)(q4 + 1)(q4 + q3 + q2 + q + 1)({64232} + {52422})
[−420] −q(q2 + 1)(q2 + q + 1)(q4 + 1)(q4 + q3 + q2 + q + 1)×

(q6 + q5 + q4 + q3 + q2 + q + 1){5433}
[945] +(q2 + q + 1)2(q4 + q3 + q2 + q + 1)(q6 + q3 + 1)×

(q6 + q5 + q4 + q3 + q2 + q + 1){45}

Table 5.1. The symmetric functions R
(r)
3 (q; y).

R
(4)
3 (q; y) = q3{42} − q2(q2 + q + 1){412}

R
(3)
3 (q; y) = −q2(q2 + q + 1){32} + q(q2 + q + 1)(q2 + 1){321}

R
(2)
3 (q; y) = −(q2 + q + 1)(q4 + q3 + q2 + q + 1){23}
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Table 5.2. The multinomials U
(u)
4 (q; x).

U
(0)
4 (q; x) = q3[(023) + (0204) + (0224) + (036)] −

q2(q2 + 1)[(0213) + (0123 + (0105) + (0215)] +q(q2 + 1)2(0124)

U
(1)
4 (q; x) = −q2(q2 + 1)[(1221) + (1203) + (1023) + (1025)] +

q(q2 + 1)2[(1212) + (1222) + (1204) + (1014)] − (q2 + 1)3(133)

U
(2)
4 (q; x) = q3[(23) + (2202) + (2022) + (2024)] − q2(q2 + 1)[(2212) +

(2121) + (2103) + (2013)] + q(q2 + 1)2(2122)

Table 5.3. The products W
(u,r)
4 (q; x) = U

(u)
4 (q; x)R

(r)
3 (q; y).

W
(0,4)
4 (q; x) = 0

W
(0,3)
4 (q; x) = −q5(q2 + q + 1){4231} + q4(q2 + q + 1)2{4222}−

q2(q2 + q + 1)2(q4 + q3 + q2 + q + 1){34}
W

(0,2)
4 (q; x) = −q2(q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1){34}

W
(1,4)
4 (q; x) = 0

W
(1,3)
4 (q; x) = 0

W
(1,2)
4 (q; x) = (q2 + 1)2(q2 + q + 1)2(q4 + q3 + q2 + q + 1){34}

W
(2,4)
4 (q; x) = q6{642} − q5(q2 + q + 1){6412} + {632} + q4(q2 + 1)(q2 + q + 1){6321}−

q3(q2 + q + 1)(q4 + q3 + q2 + q + 1){623}
W

(2,3)
4 (q; x) = −q5(q2 + q + 1){522} + q4(q2 + q + 1)2{5212} + q4(q2 + 1)(q2 + q + 1){543}−

q3(q2 + 1)2(q2 + q + 1){5421} − q3(q2 + q + 1)(q4 + q2 + 1){5321} +

q2(q2 + q + 1)2(q4 + q2 + 1){5322}
W

(2,2)
4 (q; x) = −q3(q2 + q + 1)(q4 + q3 + q2 + q + 1)({43} + {4222} +

q2(q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1){4231}−
q(q4 + q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1){4322}

Thus for u = 1 the only non-vanishing term is that for which r = N − 2. In this case we
have

R
(N−2)
N−1 (q; y) = (−1)(N−1)(N−2)/2[2N − 3]!!qs(N−2)N−1(y). (5.5)

Then, for 4 � N � 10, the results of multiplication by U
(1)
N (q; x) suggests

Conjecture 5.2. For N � 4,W
(1,N−2)
N (q; x) = w(1,N−2)(q)s(N−1)N (x) with

w(1,N−2)(q) =
{

(−1)N/2[2]q2

[
N
2

]
q2 [N − 1]q[2N − 3]!!q for N even

(−1)(N−1)/2[2]q2

[
N−1

2

]
q2 [N ]q[2N − 3]!!q for N odd.

(5.6)

Similar calculations in the case u = 0 suggest

Conjecture 5.3. For N � 4,W
(0,N−2)
N (q; x) = w(0,N−2)(q)s(N−1)N (x) with

w(0,N−2)(q) =
{

(−1)(N+2)/2q2
[

N
2

]
q2 [N − 3]q[2N − 3]!!q for N even

(−1)(N+1)/2q2
[

N−3
2

]
q2 [N ]q[2N − 3]!!q for N odd.

(5.7)

The case u = 2 on the other hand is more complicated and we are not able to suggest any
general form for W

(2,r)
N (q; x) although the standardization rules are such that all the surviving

Schur functions are necessarily of the form sλ(x) with λ = (r +2, ν) for some partition ν of the
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appropriate weight. Furthermore, if r takes its maximum value, 2N − 4, then r + 2 = 2N − 2
and we must have λ = (2N − 2, ν) with ν ∈ AN−1. To be more precise, using the notation of
(4.14) and (4.16),

W
(2,2N−4)
N (q; x) =

∑
γ,µ∈AN−1

c
(2N−4,µ)

N−1 (q)b
(2,γ )

N (q)s(2N−2,µ+γ )(x)

=
∑

γ,µ∈AN−1

qN−1c
µ

N−2(q)b
γ

N−1(q)s(2N−2,µ+γ )(x)

=
∑

ν∈AN−1

qN−1cν
N−1(q)s(2N−2,ν)(x) (5.8)

where use has been made of both property 6.2 (see section 6) and (4.21) with the standardization
rule (4.7) necessarily leaving the first part, 2N − 2, of the relevant partitions fixed. A further
application of property 6.2 then gives

W
(2,2N−4)
N (q; x) =

∑
ν∈AN−1

c
(2N−2,ν)
N (q)s(2N−2,ν)(x). (5.9)

These results are well illustrated in table 5.3 for the case N = 4 where it can be seen that the
relevant coefficients are just q3 times those appearing in table 4.2, and coincide with those
appearing in table 4.3. This is necessary since in our refinement of the calculation of RN(q; x)

the terms s(2N−2,ν)(x) can only arise from W
(2,2N−4)
N (q; x).

6. Properties of the polynomials cλ
N (q)

On the basis of explicit calculations of cλ
N(q) up to N = 9, we were led first to conjecture

and then prove the following factorization property, which is the q-dependent generalization
of property 5 given by Di Francesco et al [4] in the q = 1 case.

Property 6.1. Let λ ∈ AM+N be such that aM+N,N−1(λ) = 0, so that from lemma 2.4
λ = ((2N)M + µ, ν) with µ ∈ AM ν ∈ AN . Then

cλ
M+N(q) = qMNc

µ

M(q)cν
N(q) with µ =∈ AM and ν ∈ AN. (6.1)

Proof. Let x = (y, z) with y = (y1, y2, . . . , yM) and z = (z1, z2, . . . , zN). Then from (3.3)
and (3.5) we have

RM+N(q; x) = RM(q; y)RN(q; z)
M∏
i=0

N∏
j=0

(yi − qzj )(qyi − zj )

=
∑

µ∈AM

c
µ

M(q)sµ(y)
∑
ν∈AN

cν
N(q)sν(z)


 M∏

i=0

(
qy2

i

)N
+ · · · +

N∏
j=0

(
qz2

j

)M




=
∑

µ∈AM

c
µ

M(q)sµ(y)
∑
ν∈AN

cν
N(q)sν(z)

(
qMNs(2N)M (y) + · · · + qMNs(2M)N (z)

)

=
∑

µ∈AM

∑
ν∈AN

(
qMNc

µ

M(q)cν
N(q)s(2n)M +µ(y)sν(z)

+ · · · + qMNc
µ

M(q)cν
N(q)sµ(y)s(2M)N +ν(z)

)
. (6.2)
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The final + · · · + indicates a linear combination of terms that are necessarily symmetric in the
components of y and in those of z. They are of the form p

ξ,ζ

N (q)sξ (y)sζ (z) with p
ξ,ζ

N (q) a
polynomial in q, |µ| < |ξ | < 2MN + |µ| and |ν| < |ζ | < 2MN + |ν|. This implies that for
fixed µ and ν the two terms displayed in (6.2) are of a different weight in the components of
y and z from all the others. However

RM+N(q; y, z) =
∑

λ∈AM+N

cλ
M+N(q)sλ(y, z)

=
∑

λ∈AM+N

cλ
M+N(q)

∑
σ,τ

cλ
στ sσ (y)sτ (z). (6.3)

For fixed µ ∈ AM and ν ∈ AN , comparing (6.2) and (6.3) gives∑
λ∈AM+N

cλ
M+N(q)cλ

((2N)M +µ)ν = q2MNc
µ

M(q)cν
N(q) (6.4)

and ∑
λ∈AM+N

cλ
M+N(q)cλ

µ((2M)N +ν) = q2MNc
µ

M(q)cν
N(q). (6.5)

However, the summation over λ ∈ AM+N in each of the cases (6.4) and (6.5) reduces to a
single term. The two cases are entirely analogous, so it suffices to consider (6.4). Since ν is
N-admissible with |ν| = N(N − 1) we have

aM+N,N−1(λ) =
∑
i=0

λM+N−1 − N(N − 1) =
∑
i=0

λM+N−1 − |ν|. (6.6)

It follows that if λ is to be (M + N)-admissible, then all the boxes of Fν , when added to
F (2N)M +µ to form Fλ in accordance with the Littlewood–Richardson rule, must be added
below the Mth row. This can be done in one and only one way, namely by simply adjoining
Fν to the bottom of F (2N)M +µ to give F ((2N)M +µ,ν). The corresponding Littlewood–Richardson
coefficient is 1. Thus

cλ
((2N)M+µ)ν =

{
1 if λ = ((2N)M + µ, ν)

0 otherwise.
(6.7)

Using this in (6.5) gives (6.1), thereby completing the proof of property 6.1. �

Two special cases are of particular interest. First, setting M = 1 forces µ = (0) by virtue
of the admissibility conditions. Then for consistency with (6.2) we must have R1(q; y1) = 1,
so that c

(0)
1 (q) = 1. Hence we obtain

Property 6.2. Let ν ∈ AN , then

c
2N,ν
N+1 (q) = qNcν

N(q). (6.8)

This is illustrated, for example, by

c6321
4 (q) = q4c0

1(q)c321
3 (q)

= q31c321
3 (q)

= q31q(q2 + 1)(q2 + q + 1)

= q4(q2 + 1)(q2 + q + 1). (6.9)

Similarly, setting N = 1 gives
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Property 6.3. Let µ ∈ AM , then

c
2M +µ

M+1 (q) = qMc
µ

M(q). (6.10)

For example we have

c75440
5 (q) = q4c0

1(q)c5322
4 (q)

= q4q2(q2 − q + 1)(q2 + q + 1)3

= q6(q2 − q + 1)(q2 + q + 1)3. (6.11)

It might also be pointed out that the recursive use of either property 6.2 or 6.3 gives a
rather easy way to rederive the result (4.27), c2δ

N (q) = q(N(N−1)/2.
As we have already noted, if λ is N-admissible then �(λ) is either N or N − 1. Moreover

if �(λ) = N − 1 then λN−1 � 2 and λ = (2N−1 + µ) for some µ ∈ AN−1. It then follows from
property 6.3 that

cλ
N(q) = qN−1c

λ/2N−1

N−1 (q) if �(λ) = N − 1. (6.12)

Thus property 6.3 allows cλ
N(q) to be written down immediately in terms of some c

µ

N−1(q) if
�(λ) = N − 1, leaving only those λ to be dealt with for which �(λ) = N .

The cases M = 2, 3 and 4 of property 6.1, with N arbitrary, generalize Dunne’s observation
(Dunne [3]) in the q = 1 case that, with respect to the reverse lexicographic ordering of
partitions, certain consecutive cλ

M+N may be obtained from a corresponding sequence c
µ

N

through multiplication by factors 1,−3, 6 and −12. The q-dependent generalizations of these
factors are just qp, qp(q2 + q + 1), qp(q2 + q + 1)(q2 + 1) and qp(q2 + q + 1)(q2 + 1)2,
respectively, for some appropriate power p of q.

For example, for λ = (9, 9, 6, 3, 2, 1) with M = 2 and N = 4, in the notation of
conjecture 6.2, we have µ = (1, 1) and ν = (6, 3, 2, 1) so that

c926321
6 (q) = q8c12

2 (q)c6321
4 (q)

= q8(−1)(q2 + q + 1)c6321
4 (q)

= q8(−1)(q2 + q + 1)q4(q2 + 1)(q2 + q + 1)

= −q12(q2 + 1)(q2 + q + 1)2. (6.13)

The second line of this gives c926321
6 = −3c6321

4 in the case q = 1. This is a result of the type
given by Dunne [3].

Property 6.1 itself implies much more than this. It may be used to express the polynomials
cλ
N(q) for arbitrary N-admissible λ in terms of a multiplicative basis of polynomials c

µ

M(q)

where µ is characterized by the fact that aM,k(µ) > 0 for all k = 0, 1, . . . ,M − 2. In fact the
recursive use of property 6.1 leads immediately to

Corollary 6.4. Let λ be N-admissible with

aN,k(λ)

{
=0 for k = ki for i = 1, . . . , z

�0 otherwise
(6.14)

with z � 1 and N − 1 = k1 > k2 > · · · > kz > kz+1 = −1. Let Mi = ki − ki+1 for
i = 1, 2, . . . , z. Then M1 + M2 + · · · + Mz = N and

λ = (((2Mz)
M1+M2+···+Mz−1 + · · · + ((2M3)

M1+M2 + ((2M2)
M1 + µ(1)), µ(2)), . . .), µ(z))

(6.15)
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Table 6.1. Factorization data for the case N = 9, λ = (15, 14, 13, 9, 9, 4, 4, 2, 2).

k 8 7 6 5 4 3 2 1 0
λN−k 15 14 13 9 9 4 4 2 2∑k

i=0 λN−i 72 57 43 30 21 12 8 4 2
k(k + 1) 72 56 42 30 20 12 6 2 0
aN,k(λ) 0 1 1 0 1 0 2 2 2

where for i = 1, 2, . . . , z, µ(i) is an Mi-admissible partition with aMi,m(µ(i)) > 0 for
m = 0, 1, . . . ,Mi − 2, and

cλ
N(q) = q

∑
1�i<j�z MiMj

z∏
i=1

c
µ(i)

M (q). (6.16)

This rather formidable looking q-dependent factorization property is illustrated as follows
in the case N = 9 for the 9-admissible partition λ = (15, 14, 13, 9, 9, 4, 4, 2, 2). The relevant
data are shown in table 6.1.

From these data it can be seen that in the notation of corollary 6.4 we have z =
3, k1 = 8, k2 = 5, k3 = 3, M1 = 3,M2 = 2,M3 = 4, µ(1) = (321), µ(2) = (11) and
µ(3) = (4422). All this has the rather simple diagrammatic realization given below:

(15, 14, 13, 9, 9, 4, 4, 2, 2) 	⇒ ((85 + (43 + 321), 11), 4422)
(6.17)

(85)

(43)

It then follows from corollary 6.4 that

c
15,14,13,9,9,4,4,2,2
9 (q) = q3·2+3·4+2·4c3,2,1

3 (q)c
1,1
2 (q)c

4,4,2,2
4 (q)

= q26q(q2 + 1)(q2 + q + 1)(−1)(q2 + q + 1)(−1)q3(q2 + q + 1)(q4 + 1)

= q30(q2 + 1)(q2 + q + 1)3(q4 + 1). (6.18)

Just as the factorization property has been extended from the q = 1 case to arbitrary
values of q, the same can be done in respect of the reversal symmetry property (2.12). Indeed
we have

Property 6.5. Let λ be N-admissible then λ(r) = ((2N − 2)N)/λ is also N-admissible and

cλ(r)

N (q) = cλ
N(q). (6.19)

Proof. We have already noted in section 2 that if λ is N-admissible then so is λ(r). In addition,
following a q-dependent version of an argument given by Dunne [3], we have
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RN(q; x) =
∏

1�i<j�N

(xi − qxj )(qxi − xj )

=
∏

1�i<j�N

q2x2
i x

2
j

(
q−1x−1

j − x−1
i

)(
x−1

j − q−1x−1
i

)

= qN(N−1)s(2N−2)N (x)RN(q−1; x)

= qN(N−1)s(2N−2)N (x)
∑

µ

c
µ

N(q−1)sµ(x)

=
∑

µ

qN(N−1)c
µ

N(q−1)s(2N−2)N /µ(x)

=
∑

λ

qN(N−1)cλ(r)

N (q−1)sλ(x)

=
∑

λ

cλ(r)

N (q)sλ(x) (6.20)

where the notation is such that x = (
x−1

1 , x−1
2 , . . . , x−1

N

)
, and µ has been set equal to λ(r),

with µ(r) = λ. Then in the final step use has been made of (3.12) with λ replaced by
λ(r). Comparison of (6.20) with the usual expansion (3.5) of RN(q; x) then gives (6.19) as
required. �

It is not difficult to see that property 6.1 is consistent with the reversal symmetry property
6.5 in that the application of (6.1) to cλ(r)

M+N(q) gives

cλ(r)

M+N(q) = qMNc
µ(r)

M (q)cν(r)

N (q) = qMNc
µ

M(q)cν
N(q) = cλ

M+N(q). (6.21)

While the reversal symmetry property applies to all N-admissible partitions λ, property
1 of Di Francesco et al [4] applies specifically to those N-admissible partitions λ for which
the conjugate partition λ′ is also N-admissible. In such a case Di Francesco et al noted
that cλ′

N ≡ (−1)Ncλ
Nmod 2N . Before establishing the corresponding q-dependent result, the

following result should be noted.

Lemma 6.6. The partitions λ and λ′ are both N-admissible if and only if λ ⊂ NN and
|λ| = N(N − 1), that is λ = NN/ζ where ζ is a partition of weight |ζ | = N .

Proof. If λ and λ′ are N-admissible then both �(λ) � N and �(λ′) � N so that λ ⊆ NN . In
addition we must have |λ| = |λ′| = N(N − 1) so that λ ⊂ NN and there exists ζ of weight
|ζ | = N such that λ = NN/ζ .

Conversely for any λ = NN/ζ with ζ a partition of weight |ζ | = N we have �(λ) � N

and |λ| = N(N − 1), two of the conditions for N-admissibility. In addition we have, for
k = 0, 1, . . . , N − 1

aN,k(λ) =
k∑

i=0

λN−i − k(k + 1) =
k∑

i=0

(N − ζi+1) − k(k + 1)

= k(N − 1 − k) +

(
N −

k∑
i=0

ζi+1

)
. (6.22)

Since k � N − 1 and
∑k

i=0 ζi+1 � |ζ | = N , with equalities in each case if k = N − 1, we
have aN,k � 0 for k = 0, 1, . . . , N − 2 and aN,k = 0 for k = N − 1. Thus λ is admissible.
The same argument applies to λ′ with ζ replaced by ζ ′. �
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Now we are in a position to establish the following q-dependent version of Di Francesco
et al’s property 1:

Property 6.7. If λ and λ′ are both N-admissible then

cλ′
N(q) ≡ (−q)Ncλ

N(q)mod [2N ]q . (6.23)

Proof. From (3.10) we have, on replacing λ by λ′,

cλ′
N(q) = (−1)N(N−1)/2

(1 − q)N

∑
ν⊆NN−1

(
(−q)|ν| + (−q)N

2−|ν|)cλ′
((N−1)N /ν ′)ν . (6.24)

However, the conjugacy operation is such that the Littlewood–Richardson coefficients satisfy,
cλ
µν = cλ′

µ′ν ′ , so that

cλ′
N(q) = (−1)N(N−1)/2

(1 − q)N

∑
ν⊆NN−1

(
(−q)|ν| + (−q)N

2−|ν|)cλ
(NN−1/ν)ν . (6.25)

If we now set µ = NN−1/ν so that ν = NN−1/µ and |µ| = |ν| + N(N − 1), we have

cλ′
N(q) = (−1)N(N−1)/2

(1 − q)N

∑
µ⊆NN−1

(
(−q)N(N−1)−|µ| + (−q)N+|µ|)cλ

µ,((N−1)N /µ′). (6.26)

Using this and (3.20) with ν replaced by ν we find

cλ′
N(q) − (−q)Ncλ

N(q) = 1 − q2N

1 − q

(−1)N(N−1)/2

(1 − q)N−1

∑
µ⊆NN−1

(−q)N(N−1)−|µ|cλ
((N−1)N /µ′)µ. (6.27)

Since the right-hand side vanishes if [2N ]q = 1 + q + q2 + · · · + q2N−1 = (1 − q2N)/(1 − q)

this completes our proof. �

This information about cλ
N(q) and cλ′

N(q) can be considerably strengthened. This can
be done by exploiting, as pointed out by Scharf et al [5], the connection with the graded
decomposition of the exterior algebra of gl(N). If the components xi of x = (x1, x2, . . . , xN)

are viewed as eigenvalues of gl(N), then the graded decomposition of the exterior powers of
the adjoint representation of gl(N) takes the form

∏
1�i,j�N

(
1 + qxix

−1
j

) =
N−1∑
L=0

∑
ζ�LN

e
ζ

N(q)
sζ (x)

sLN (x)
(6.28)

where L describes what has been called the layer of each term (Stembridge [15]) and the
expansion coefficients e

ζ

N(q) are polynomials in q. Rewriting RN(q; x) we find

RN(q; x) = (−1)N(N−1)/2

(1 − q)N

N−1∑
L=0

∑
ζ�LN

e
ζ

N(−q)s((N−L−1)N +ζ )(x). (6.29)

It necessarily follows that for any λ ∈ AN we can write λ = (N − L − 1)N + ζ for some
L ∈ {0, 1, . . . , N − 1} and some ζ of weight |ζ | = LN . Then

cλ
N(q) = (−1)N(N−1)/2

(1 − q)N
e
ζ

N(−q). (6.30)

This formula is useful only in as far as there exists information on e
ζ

N(−q). Fortunately,
Stembridge [15] has provided an explicit formula for these coefficients in the L = 1, layer
one case.
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Proposition 6.8. Let ζ have weight |ζ | = N then

e
ζ

N(q) =
N∏

k=1

(1 − q2k)
∏

(i,j)∈Fζ

q2i−1 + q2j−2

1 − q2h(i,j)
(6.31)

where (i, j) ∈ F ζ specifies a box in the ith row and j th column of the Young diagram F ζ

defined by the partition ζ , and h(i, j) is the corresponding hook length h(i, j) = ζi − j + ζ ′
j −

i + 1, see for example Macdonald [6].

This has an immediate corollary, namely:

Corollary 6.9. Let both λ and λ′ be N-admissible, with λ = NN/ζ for ζ a
partition of weight N which in Frobenius notation (Macdonald [6]) takes the form ζ =
(a1, a2, . . . , ar |b1, b2, . . . , br ). Then

cλ
N(q) = (−1)N(N−1)/2f ζ (q2)gζ (q) (6.32)

where

f ζ (q2) = [N ]!q2

/ ∏
(i,j)∈Fζ

[h(i, j)]q2 (6.33)

and

gζ (q) =
r∏

k=1

(−q)akq2(ak+bk+1)(k−1)[2ak − 1]!!q[2bk + 1]!!q . (6.34)

Proof. Under the given hypothesis λ = (NN/ζ ), we have λ(r) = ((2N − 2)/λ) =
((N − 2)N + ζ ). Hence from property 6.5, (6.30) and (6.31)

cλ
N(q) = (−1)N(N−1)/2

∏N
k=1 1 − q2k∏

(i,j)∈Fζ 1 − q2h(i,j)

∏
(i,j)∈Fζ

−q2i−1 + q2j−2

1 − q
. (6.35)

The first quotient is just f ζ (q2) as given by (6.33). This is just the q2 form of the
familiar hook length formula for the dimension, f ζ , of the irreducible representation of
the symmetric group SN specified by the partition ζ . The final product serves to define
gζ (q). This can be written in many equivalent ways, but that offered in (6.34) is arrived at
by writing each factor (−qx + qy)/(1 − q) as −qx(1 − qy−x)/(1 − q) = −qx[y − x]q or
qy(1 − qx−y)/(1 − q) = qy[x − y]q according as x < y or x > y. �

Finally in this section, we offer a q-dependent generalization of yet another remarkable
formula due to Di Francesco et al [4] in the case q = 1, namely their property 7. We believe
that the appropriate generalization takes the form

Conjecture 6.10. For any fixed partition µ of weight |µ|∑
2N−2�α1�α2�−N+2
α1+α2=N(N−1)−|µ|

q2N−2−α1 [α1 − α2 + 1]qc
(α1,α2,µ)

N (q) = 0 (6.36)

where for any α = (α1, α2, µ)

cα
N(q) =

{
±cλ

N(q) if sα(x) = ±sλ(x) with λ ∈ AN

0 otherwise.
(6.37)

The evidence for this is rather compelling, but as yet we can offer no proof.
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7. Explicit N-dependent formulae for cN (λ)

While many of the results of section 4 and other calculations appear to conform to no discernible
pattern, some of them do suggest the possibility of writing down explicit N-dependent
formulae. The simplest such case is afforded by λ = 2δ = (2N − 2, 2N − 4, . . . , 2, 0)

for which we have

c
(2N−2,2N−4,...,2,0)
N (q) = qN(N−1)/2. (7.1)

This may be established from definition (3.3) which is such that

RN(q; x) =
∏

1�i<j�N

(
qx2

i

)
+ · · · = qN(N−1)/2x2N−2

1 x2N−4
2 · · · x2

N−1 + · · · (7.2)

where the term that has been singled out is the unique highest weight term. This is sufficient
to prove (7.1).

At the other end of the lists we can use (3.7) to identify cλ
N(q) for λ = (N −1)N . Because

of the necessity of dividing by s1N (x), the required polynomial is the coefficient of sNN (x)

arising from the sum over products of the form sNN/µ′(x)sµ(x). Each such product contributes
a term sNN (x) if and only if µ is a self-conjugate partition, that is µ′ = µ. Hence

c
(N−1)N

N (q) = (−1)N(N−1)/2

(1 − q)N

∑
µ′=µ⊆NN

(−q)|µ|

= (−1)N(N−1)/2

(1 − q)N

N−1∏
k=0

(1 − q2k+1)

= (−1)N(N−1)/2[2N − 1]!!q . (7.3)

Similarly,

cNN−1

N (q) = (−1)N(N−1)/2

(1 − q)N

∑
µ⊆NN

(−q)|µ|c((N+1)N−1,1)

(NN /µ′)µ . (7.4)

There are just two possibilities �(µ) = N −1 and µ = (1N−1 + ν) with ν ′ = ν ⊆ (N −1)N−1,
and �(µ) = N with µ = (1N + ν) with ν ′ = ν ⊆ (N − 1)N . This gives

cNN−1

N (q) = (−1)N(N−1)/2

(1 − q)N

(
(−q)N−1 + (−q)N

) ∑
ν ′=ν⊆(N−1)N−1

(−q)|ν|

= (−1)N(N−1)/2

(1 − q)N−1
(−q)N−1

N−2∏
k=0

(1 − q2k+1)

= (−1)(N−1)(N−2)/2qN−1[2N − 3]!!q (7.5)

Both Dunne [3] and Di Francesco et al [4] have given a number of other specific formulae.
One of the most interesting can be generalized to the q-dependent case as follows. It concerns
the case λ = 2δ − α where α = εk − εk+m, with m � 1, is any positive root of gl(N). Since
every such positive root can be expressed as a linear combination of simple roots αp with
non-negative integer coefficients gp, it follows from the argument used in corollary 3.2 that
every such λ is N-admissible. In fact we find

c
2δ−εk+εk+m

N (q) = (−1)mqN(N−1)/2−m(q2 + 1)m−1(q2 + q + 1). (7.6)

This is illustrated for example in table 4.4 with N = 5 and λ = (7, 6, 4, 2, 1) = (8, 6, 4, 2, 0)−
(1, 0, 0, 0,−1) = 2δ − ε1 + ε5, for which we have m = 4 and c76421

5 = q6(q2 + 1)3(q2 + q + 1).
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One way to derive (7.6) is to note that the use of (3.18) in (3.25) gives

Rλ
N(q; x)aδ(x) =

∑
λ∈AN

cλ
N(q)aλ+δ(x) =

∑
λ∈AN

cλ
N(q)(xλ+δ + · · ·) (7.7)

where ‘· · ·’ indicates terms on the Weyl orbit of λ + δ obtained by permuting its components,
and λ + δ is the unique term on this orbit in the dominant sector. It follows that

cλ
N(q) = Rλ

N(q; x)aδ(x)|xλ+δ

=
∏

1�i<j�N

(xi − qxj )(qxi − xj )(xi − xj )|xλ+δ

= qN(N−1)/2
∏

1�i<j�N

(
x3

i − (q+1+q−1)x2
i xj + (q+1+q−1)xix

2
j + x3

j

)∣∣
xλ+δ (7.8)

where ‘· · · |xλ+δ ’ indicates that the polynomial cλ
N(q) is to be obtained by taking the coefficient

of xλ+δ in the relevant expansion. In the case λ = 2δ − εk + εk+m we need to select from the
above factors the terms in x3

i for all i < k, and in x3
i for all i = k except for one term of the

form −(q+1+q−1)x2
i xj with i = k < j � k + m. This leads to

c
2δ−εk+εk+m

N (q) = qN(N−1)/2dm(q) (7.9)

where

dm(q) = −(q + 1 + q−1)

m−1∑
l=0

dl(q) with d0(q) = 1. (7.10)

The solution to this recurrence relation,

dm(q) = (−1)m(q + 1 + q−1)(q + q−1)m−1 (7.11)

leads directly to the result (7.6), which is the q-dependent generalization of formula (61) of
Dunne [3] and equation (D.10) of Di Francesco et al [4].

Trying to extend this type of analysis to cases of the form λ = 2δ − 2εk + 2εk+m with
m � 2 is more complicated. In fact formula (D.11) offered by Di Francesco et al [4] does not
apply to all N and m, nor does there appear to be any simple q-dependent formula valid for all
m. In the q-dependent case we find from our calculations of cλ

N(q) the following formulae:

c
2δ−2εk+2εk+2
N (q) = −qN(N−1)/2−3[3]q(q

4 + q3 + q2 + q + 1)

c
2δ−2εk+2εk+3
N (q) = −qN(N−1)/2−3[3]q(q

4 + 1)

c
2δ−2εk+2εk+4
N (q) = +qN(N−1)/2−6[3]q(q

10 + 2q9 (7.12)

+ 4q8 + 3q7 + 6q6 + 5q5 + 6q4 + 3q3 + 4q2 + 2q + 1)

c
2δ−2εk+2εk+5
N (q) = −qN(N−1)/2−7[3]q(q

12 + 2q10 + 6q8 + 5q6 + 6q4 + 2q2 + 1).

The third of these results is illustrated for N = 5 in table 4.4 by the case λ = (6, 6, 4, 2, 2)

for which m = 4. For q = 1 the first three of the results (7.12) are in agreement with the
formula (D.11) of Di Francesco et al [4]. However, the fourth result shows that (D.11) does not
extend to the case m = 5. The rather formidable and varied nature of the q-dependent factors
displayed in (7.12) appears to preclude the derivation of any q-dependent formula appropriate
to all N and m.

By the same token the pattern of results indicated by Dunne [3] in his formulae (60) for
the cases λ = (N − 1)η + n(ε1 − εN) with η = (1, 1, . . . , 1) does not extend to all N and n.
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For example, for N = 7 we find

c666 666
7 (q) = −[13]!!q

c766 665
7 (q) = +[11]!!q[6]q2

c866 664
7 (q) = +[9]!!q[1]!!q[5]q2 [3]q4

c966 663
7 (q) = +[7]!!q[3]!!q[5]q2 [2]q4 [2]q6 (7.13)

c1066 662
7 (q) = +[5]!!q[5]!!q[5]q2 [3]q4

c1166 661
7 (q) = +[3]!!q[7]!!q[6]q2

c1266 660
7 (q) = +[1]!!q[9]!!q .

The results for N = 8 are even more complicated with factors that cannot be expressed in the
form [m]qp for any m or p. Only the first two and last two expressions in (7.39) generalize for
all sufficiently large-N for the relevant q-numbers to be well defined:

c
(N−1)N

N (q) = (−1)[N/2][2N − 1]!!q

c
N,(N−1)N−2,N−2
N (q) = −(−1)[N/2][2N − 3]!!q[N − 1]q2

(7.14)
c

2N−3,(N−1)N−2,1
N (q) = −(−1)[N/2][3]!!q[2N − 7]!!q[N − 1]q2

c
2N−2,(N−1)N−2,0
N (q) = −(−1)N/2][2N − 5]!!q .

8. Specific values of q

In this section, we turn to specific values of q. First setting q = 0 gives

RN(0; x) =
∏

1�i<j�N

(−xixj ) = (−1)N(N−1)/2s(N−1)N (x). (8.1)

Thus

cλ
N(0) =

{
(−1)N(N−1)/2 if λ = (N − 1)N

0 otherwise.
(8.2)

This implies that for all λ ∈ AN other than λ = (N − 1)N the polynomial cλ
N(q) contains a

factor qp with p � 1.
Setting q = ±i gives

RN(±i; x) =
∏

1�j<k�N

(±i)
(
x2

j + x2
k

) = (±i)N(N−1)/2sδ(x2) (8.3)

where x2 = (
x2

1 , x2
2 , . . . , x2

N

)
, so that

sδ(x2) = sδ ⊗ p2(x) = p2 ⊗ sδ(x) = (s2 − s12) ⊗ sδ(x) (8.4)

where p2(x) = x2
1 + x2

2 + · · · + x2
N is a power sum symmetric function and ⊗ signifies the

operation of plethysm (Macdonald [6]). Since this plethysm is just sδ(x2) it may be evaluated
by expanding sδ(x) as a sum of monomials of length � N , doubling their parts, and then
expanding the resulting monomials as a sum of Schur functions sλ(x) with �(λ) � N . This
method may be used to establish, for example, the results of table 8.1. Once again the relevant
Schur functions sλ(x) have for typographical convenience been denoted by {λ}.



The square of the Vandermonde determinant and its q-generalization 761

Table 8.1. The expansion of RN(±i; x) for N = 2, 3 and 4.

N RN(±i; x)

2 ±i({2} − {12})
3 ∓i({42} − {412} − {32} + {23})
4 −({642} − {6412} − {632} + {623} − {522} + {5212} + {5321}−

{5322} + {43} − {4231} + 2{4222} − {4322} + {34})

More interestingly, setting q = ω with ω a primitive cube root unity satisfying
ω2 + ω + 1 = 0 we have

RN(ω; x) =
∏

1�i<j�N

(xi − ωxj )(ωxi − xj )

=
∏

1�i<j�N

(
ωx2

i − (ω2 + 1)xixj + ωxj

)

=
∏

1�i<j�N

ω
(
x2

i + xixj + x2
j

)

= ωN(N−1)/2
∏

1�i<j�N

x3
i − x3

j

xi − xj

= ωN(N−1)/2s2δ(x) (8.5)

where use has been made of (3.18). This implies that

cλ
N(ω) =

{
ωN(N−1)/2 if λ = 2δ

0 otherwise.
(8.6)

This implies the following:

Property 8.1. Each polynomial cλ
N(q) contains a factor (q2 + q + 1) for all λ ∈ AN except

λ = 2δ = (2N − 2, 2N − 4, . . . , 2, 0).

This is the origin of the observation (Dunne [3]) in the case q = 1 that cλ
N is divisible by

3 for all λ except λ = 2δ.

9. Vanishing coefficients in the case q = 1

At first sight it appears that cλ
N = cλ

N(1) �= 0 for any λ ∈ AN . A study of the cases
N = 2, 3, . . . , 7 supports this. Indeed for N = 2, 3, . . . , 6 we find that the expansions of the
polynomials in the form

cλ
N(q) =

∑
p

npqp (9.1)

are such that for each N-admissible λ the non-vanishing coefficients np are integers, all of
the same sign. The first exception to this occurs for N = 7. For example, we find for
λ = (9, 8, 8, 7, 4, 4, 2) that

c9827422
7 (q) = q33 + q32 + 4q31 + q30 + 8q29 + 15q27 − q26 + 25q25 + 2q24

+ 38q23 + 6q22 + 43q21 + 6q20 + 38q19 + 2q18 + 25q17 − q16

+ 15q15 + 8q13 + q12 + 4q11 + q10 + q9. (9.2)
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The fact that n26 = n16 = −1, while all the other coefficients are positive, is the first indication
that for q = 1 the coefficients cλ

N might vanish for some N-admissible λ. As can be seen
this does not happen in the case (9.2), and it turns out that for N = 7 it never happens. For
N = 7 there are 15 admissible partitions λ such that the coefficients np are positive for some
values of p and negative for other values, giving rise to a total of seven distinct polynomials of
type (9.1) having this property. In the case λ = (10, 9, 7, 6, 6, 3, 1) it is found that np varies
from −10 to +26. However, none of the seven polynomials vanishes at q = 1, that is when
factorized they contain no factor (q − 1). Typically, we find for (9.2) the factorization

c9827422
7 = q9(q2 + q + 1)3(q4 + q2 + 1)2

×(q10 − 2q9 + 2q8 − 2q7 + 3q6 − 3q5 + 3q4 − 2q3 + 2q2 − 2q + 1). (9.3)

On the other hand, turning to N = 8 we find that there are eight N-admissible partitions
λ such that cλ

N = 0. They occur as four pairs of partitions λ and λ(r) related by the reversal
symmetry (2.11). They are

λ = (13 11 985241) λ(r) = (13 10 926531) (9.4a)

λ = (13 11 985422) λ(r) = (12 102 96531) (9.4b)
λ = (13 11 976541) λ(r) = (13 10 987531) (9.4c)
λ = (12 11 972422) λ(r) = (12 102 72532). (9.4d )

The corresponding four q-polynomials cλ
8(q) take the form

c13 11 985241
8 = −q17(q2 + 1)2(q2 + q + 1)3(q4 + q2 + 1)2(q − 1)4 (9.5a)

c13 11 985422
8 = q16(q2 + 1)(q2 + q + 1)3(q4 + q2 + 1)3(q − 1)4 (9.5b)

c13 11 976541
8 = q16(q2 + 1)3(q2 + q + 1)3(q4 + q2 + 1)2(q − 1)4 (9.5c)

c12 11 972422
8 = q14(q2 + q + 1)3(q4 + q2 + 1)2(q − 1)4

×(q10 + q9 + 3q8 + 4q6 + q5 + 4q4 + 3q2 + q + 1). (9.5d )

In each of the above cases the factor (q − 1) occurs, so that cλ
8 = 0, as claimed. It is notable

that in each case the power of (q − 1) is 4. There are no factors of (q + 1) so that as required
by corollary 3.2 and (3.28), these polynomials do not vanish for q = −1. The values of
cλ

8(−1) = cλ
δδ are given in the right most position below:

λ = (13 11 985241} λ(r)(13 10 926531) (576) (9.6a)

λ = (13 11 985422} λ(r)(12 102 96531) (864) (9.6b)
λ = (13 11 976541} λ(r)(13 10 987531) (1152) (9.6c)
λ = (12 11 972422} λ(r)(12 102 72532) (1872). (9.6d )

As indicated earlier, extending the analysis to N = 9 we find that there are 66 different
9-admissible partitions λ such that cλ

9 = 0, while for N = 10 there are 389 different 10-
admissible partitions λ such that cλ

10 = 0. Remarkably, as in the case of N = 8, all the N = 9
polynomials vanishing at q = 1 contain a factor of (q − 1)4.

10. Sum rules

In their seminal work on the q = 1 case Di Francesco et al [4] established a remarkable set of
sum rules for the coefficients appearing in the Schur function expansion of even powers of the



The square of the Vandermonde determinant and its q-generalization 763

Vandermonde determinant. In the case of the square of the Vandermonde determinant their
result takes the form∑

λ

(
cλ
N

)2 = (3N)!

(3!)NN !
. (10.1)

Once again there exists a q-dependent form of this result, namely

Property 10.1. For all N � 2∑
λ

cλ
N(q)cλ

N(q2) = [3N ]!q
([3]!q)N [N ]!q3

= [3N − 1]!!!q[3N − 2]!!!q
([2]q)N

. (10.2)

Proof. Consider the product

VN(x)RN(q; x)RN(q2; x) =
∑
µ,ν

c
µ

N(q)cν
N(q2)sµ(x)sν(x)aδ(x)

=
∑
µ,ν,λ

c
µ

N(q)cν
N(q2)cλ

µνaλ+δ(x) (10.3)

where, as in (3.18), aδ(x) = ∣∣xN−j

i

∣∣ and, aλ+δ(x) = ∣∣xλj +N−j

i

∣∣, while cλ
µν is the Littlewood–

Richardson coefficient defined in (3.9). In this expansion the coefficient of xλ+δ is given
by

VN(x)RN(q; x)RN(q2; x)|xλ+δ =
∑
µ,ν,λ

c
µ

N(q)cν
N(q2)cλ

µν. (10.4)

However, for λ = ((2N − 2)N) we have cλ
µν = 0 unless ν = µ(r), in which case its value is 1.

Recalling reversal symmetry property 6.5, and it follows that∑
µ

c
µ

N(q)c
µ

N(q2) = VN(x)RN(q; x)RN(q2; x)|x(2N−2)N +δ

=
∏

1�i<j�N

(xi − xj )(xi − qxj )(qxi − xj )(xi − q2xj )(q
2xi − xj )|x(2N−2)N +δ

=
∏

1�i<j�N

(
1 − xj

xi

)(
1 − qxj

xi

)(
1 − q2xj

xi

)(
1 − qxi

xj

)(
1 − q2xi

xj

)∣∣∣∣∣∣
x0

(10.5)

where x0 = 1. However, we have at our disposal the following constant term identity due to
Bressoud and Goulden [14]:

Theorem 10.2. For i = 1, 2, . . . , N let ai be positive integers, then

∏
1�i<j�N

(
1 − xj

xi

)(
1 − qxj

xi

)
· · ·

(
1 − qai−1xj

xi

) (
1 − qxi

xj

)
· · ·

(
1 − qaj −1xi

xj

)∣∣∣∣∣∣
x0

= [a1 + a2 + · · · + aN ]!q
[a1]!q[a2]!q · · · [aN ]!q

N∏
i=1

1 − qai

1 − qai+ai+1+···+aN
. (10.6)

Setting ai = 3 for all i = 1, 2, . . . , N gives the first form offered for the required sum
in (10.2) since (1 − q3)/(1 − q3m) = 1/[m]q3 . The second form just follows by noting that
[3N ]!!!q/(([3]!q)N [N ]!q3) = 1/([2]q)N .



764 R C King et al

More generally, theorem 10.2 implies in exactly the same way as before

VN(x)

p−1∏
k=1

RN(qk; x)|xk(N−1)+δ = (−1)(p−1)N(N−1)/2 [pN ]!q
([p]!q)N [N ]!qp

. (10.7)

However this only gives∑
λ,µ,...,ν

cλ
N(q)c

µ

N(q2) · · · cν
N(qp−1)cMN

λµ···ν = (−1)(p−1)N(N−1)/2 [pN ]!q
([p]!q)N [N ]!qp

(10.8)

with M = (p − 1)(N − 1), where the generalized Littlewood–Richardson coefficient cMN

λµ···ν
appearing here is the multiplicity of the Schur function sMN (x) = x(M,M,...,M) in the product
sλ(x)sµ(x) · · · sν(x). It does not give what one might have hoped for, namely an expression
for ∑

λ

cλ
N(q)cλ

N(q2) · · · cλ
N(qp−1). (10.9)

On the other hand by setting
m∏

k=1

RN(qk; x) =
∑

λ

d
m;λ
N (q)sλ(x) (10.10)

and
2m∏

k=m+1

RN(qk; x) =
∑

λ

e
m;λ
N (q)sλ(x) (10.11)

we have two different q-generalizations, dm;λ
N (q) and e

m;λ
N (q), of the coefficients c

m;λ
N appearing

in expansion (2.9) of the 2mth power of the Vandermonde determinant. Extending the reversal
symmetry argument to these cases it then follows from (10.7) with p = 2m + 1 that∑

λ

d
m;λ
N (q)e

m;λ
N (q) = [(2m + 1)N ]!q

([2m + 1]!q)N [N ]!q2m+1
. (10.12)

Setting q = 1 then gives the remarkable result (1.4) of Di Francesco et al [4]∑
λ

(
c
m;λ
N

)2 = ((2m + 1)N)!

((2m + 1)!)NN !
. (10.13)

Turning to the simpler case p = 2 in (10.8) gives∑
λ

cλ
N(q)cMN

λ = (−1)N(N−1)/2 [2N ]!q
([2]!q)N [N ]!q2

= [2N − 1]!!q (10.14)

where now M = N − 1 and cMN

λ = 1 if λ = (N − 1)N and is zero otherwise. Hence

c
(N−1)N

N (q) = (−1)N(N−1)/2[2N − 1]!!q (10.15)

precisely as in (7.3).
Thus our analysis fails to give an expression for what might be thought of as the simplest

sum of all, namely

CN(q) =
∑

λ

cλ
N(q). (10.16)

With this notation, and letting CN = CN(q) we find the data shown in table 10.1.
In the case q = 1 the results have been extended up to N = 10 as indicated in table 10.2.
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Table 10.1. Values of CN(q) and CN = CN(1) for N � 6.

N CN CN(q)

2 −2 −(q2 + 1)

3 −14 −(q6 + q5 + 4q4 + 2q3 + 4q2 + q + 1)

4 +70 + (q12 + 2q11 + 6q10 + 4q9 + 11q8 + 4q7 +
14q6 + 4q5 + 11q4 + 4q3 + 6q2 + 2q + 1)

5 +910 +(q20 + 3q19 + 9q18 + 13q17 + 30q16 + 31q15 + 69q14 +
52q13 + 112q12 + 68q11 + 134q10 + 68q9 + 112q8 + 52q7 +
69q6 + 31q5 + 30q4 + 13q3 + 9q2 + 3q + 1)

6 −7280 −(q30 + 4q29 + 13q28 + 26q27 + 56q26 + 78q25 + 146q24 +
146q23 + 293q22 + 210q21 + 509q20 + 242q19 + 732q18 +
220q17 + 866q16 + 196q15 + 866q14 + 220q13 + 732q12 +
242q11 + 509q10 + 210q9 + 293q8 + 146q7 + 146q6 +
78q5 + 56q4 + 26q3 + 13q2 + 4q + 1)

Table 10.2. Values of CN = CN(1) for N � 10.

N AN = #{AN } CN = ∑
λ cλ

N |C|N = ∑
λ |cλ

N |
2 2 −2 4
3 5 −14 28
4 16 +70 292
5 59 +910 410 2
6 247 −728 0 734 44
7 111 1 −138 320 160 583 8
8 529 4 +152 152 0 416 032 00
9 263 10 +380 380 00 124 767 626 2
10 135 281 −532 532 000 425 511 379 84

These data on CN are entirely consistent with the recursive formula

CN

CN−1
= (−1)N+1




3N − 2

2
N even

3N − 2 N odd
(10.17)

and thereby leads to the following:

Conjecture 10.3. The sum CN of the coefficients appearing in the Schur function expansion
of the square of the Vandermonde determinant VN(x) is given by

CN = (−1)N(N−1)/2 (3N − 2)!!!

2[N/2]
. (10.18)

In general CN(q) does not factorize nicely over the integers and CN(q)/CN−1(q) is not
a polynomial in q. Thus the most obvious q-dependent generalization of (10.18) cannot be
valid. A possible remedy is to introduce a weighting wλ

N(q) such that wλ
N(1) = 1 for all N

and all λ and

CN,w(q) =
∑

λ

wλ
N(q)cλ

N(q) = (−1)N(N−1)/2 [3N − 2)]!!!q(
[2]q

)[N/2] . (10.19)

Although one can indeed fit the data for each N by some choice of wλ
N(q) for various λ there

appears to be no acceptable rationale for its dependence on λ. The existence of an appropriate
form of wλ

N(q) therefore remains an open problem, as indeed does that of either proving
conjecture 10.3 or finding a value of N for which it breaks down.
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11. Concluding remarks

Our original objective was to shed light upon the vanishing of certain of the coefficients, cλ
N(1),

in the expansion of the square of the Vandermonde determinant into Schur functions. This
led us to reconsider the concept of admissibility, originally formulated by Di Francesco et al
[4], and to explore the q-generalization of the square of the Vandermonde determinant. In that
process it was necessary to sharpen the algorithms for evaluating the q-dependent coefficients,
cλ
N(q), for arbitrary values of q and to study their dependence on q,N and λ. The calculation

of complete data for N � 9 for arbitrary q and for N = 10 with q = 1 allowed us to test a
number of hypotheses and stimulated various conjectures, most of which we have been able
to prove here.

To be more precise, we have determined q-dependent generalizations of all eight properties
0–7 established in the q = 1 case by Di Francesco et al [4]. These generalizations have all
been proved, save that of property 7 which is embodied in our conjecture 6.10. The proven
generalizations include the factorization property 6.1 and its corollary 6.4 which allows all
polynomials cλ

N(q) to be expressed in terms of a multiplicative basis, of polynomials c
µ

M(q)

for which the admissibility coefficients aM,k(µ) are positive for all k = 0, 1, . . . , M − 2.
In addition, having made the connection through the q = −1 case with the work

of Berenstein and Zelevinsky [9] we have proved in proposition 3.3 that the admissibility
conditions on λ are necessary and sufficient for cλ

N(q) to be non-vanishing. The fact, reported
previously (Scharf et al [5]), that for N � 8 there exist some N-admissible partitions λ such
that cλ

N = cλ
N(1) = 0 then has to be interpreted as accidental in the sense that for such λ it

just so happens that the polynomial cλ
N(q) contains a factor (q − 1). This has been exhibited

explicitly in section 9.
Consideration of the q-dependent case also links the problem of the square of the

Vandermonde determinant with that of the graded decomposition of the exterior algebra
of gl(N). This allowed us to lean on the work of Stembridge [15] to greatly strengthen the
observations in the q = 1 case made by Di Francesco et al [4] regarding those partitions λ for
which both λ and its conjugate λ′ are N-admissible. The outcome is the explicit formula of
corollary 6.9 for cλ

N(q).
While many of the q-dependent calculations lead to formulae such as (7.13) in which the

q = 1 results are generalized merely by replacing integer factors by q-numbers, it is notable
that the q-numbers themselves may sometimes be [m]q2 or [m]q3 rather than just [m]q . This
is particularly striking in the case of the remarkable new sum rule, property 10.1, which is the
q-dependent generalization of the formula of Di Francesco et al [4] for the sum of the squares
of the expansion coefficients.

Unfortunately, although we have provided a conjecture, namely conjecture 10.3, regarding
the apparently simpler sum of the coefficients themselves, its proof or disproof remains an
open problem. The fact that we have verified it to be true for all N � 10 might be construed as
compelling evidence for its validity for all N. This, along with similarly compelling evidence
for the validity of the conjectures of section 5 regarding our refinement of the algorithm for
calculating cλ

N(q), especially conjecture 5.1, hints at the richness of the field and the possibility
that much remains to be uncovered.
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